Решения задач олимпиады по электротехнике «ЭлТех» 2025

Задача 1. (25 баллов)

Катушка индуктивности с параметрами $R=3\,\mathrm{Om},\,L=9,95\,\mathrm{m}\Gamma\mathrm{h}$ включена последовательно с сопротивлением $R_1=2\,\mathrm{Om}.$ К цепи приложено напряжение $u=141\sin 314t$ (рис.). Определить действующие значения тока в цепи и напряжения на каждом элементе. Определить активную, реактивную, полную мощности цепи и угол сдвига фаз между током и напряжением.

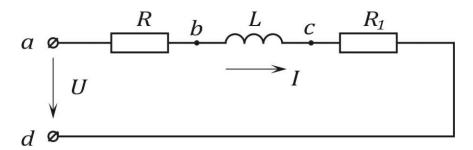


Рисунок к задаче 1

Решение.

Полное сопротивление цепи

$$Z = \sqrt{(R + R_1)^2 + (\omega L)^2} = \sqrt{5^2 + (314 \cdot 9.95 \cdot 10^{-3})^2} = 5.896 \ Om.$$

Амплитудное значение тока

$$I_m = \frac{U_m}{Z} = \frac{141}{5,896} = 23,915A.$$

Действующее значение тока

$$I = \frac{I_m}{\sqrt{2}} = 16,913A.$$

Действующие значения напряжения

$$U_R = I \cdot R = 16,913 \cdot 3 = 50,739B$$
.

$$U_{R_1} = I \cdot R_1 = 16,913 \cdot 2 = 33,826B.$$

$$U_L = I \cdot \omega L = 16,913 \cdot 3,124 = 52,836B.$$

Активная мощность

$$P = I^2 \cdot (R + R_1) = (16,913)^2 \cdot 5 = 1430,248 Bm.$$

Реактивная мощность

$$Q = I^2 \cdot \omega L = (16,913)^2 \cdot 3,124 = 893,619 BAp$$
.

Полная мощность

$$S = I \cdot U = 16,913 \cdot \frac{141}{\sqrt{2}} = 1686,516 \text{ BA}.$$

Угол сдвига фаз между током и напряжением

$$\varphi = arctg \frac{\omega L}{R} = 31,997^0 \approx 32^0.$$

Otbet. $I=16,913A;\ U_R=50,739\ B;\ U_{R_1}=33,826\ B;\ U_L=52,836\ B;$ $P=1430,248\ Bm;\ Q=893,619\ BAp;\ S=1686,516\ BA;$ $\phi=31,997^0\approx32^0$.

Задача 2 (10 баллов).

В цепи (рис.) известны сопротивления R_1 =30 Ом, R_2 =60 Ом, R_3 =120 Ом и ток в первой ветви I_I =4 А. Определить ток I, мощность всей цепи P.

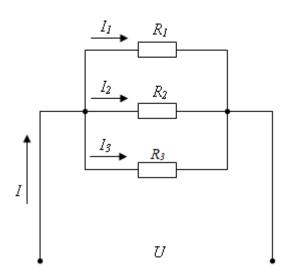


Рисунок к задаче 2

Решение.

Напряжение цепи

$$U = I_1 R_1 = 4 \cdot 30 = 120.$$

Эквивалентное сопротивление

$$\frac{1}{R_{_{\mathcal{H}B}}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} = \frac{1}{30} + \frac{1}{60} + \frac{1}{120} = \frac{7}{120}.$$

$$R_{\mathfrak{I}KG} = \frac{120}{7} O_{\mathcal{M}}.$$

Ток

$$I = \frac{U}{R_{_{9KB}}} = 7A.$$

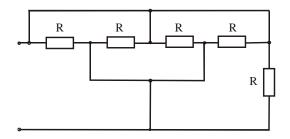
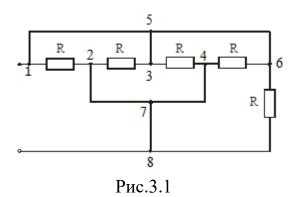
Мощность

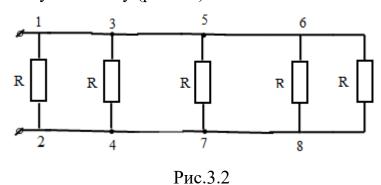
$$P = IU = 7 \cdot 120 = 840 Bm$$
.

Ответ. I = 7A; $P = 840 \ Bm$.

Задача 3 (10 баллов)

Определите эквивалентное сопротивление цепи (рис.), если R равно 50 Ом.


Рисунок к задаче 3.

Решение.

Пронумеруем узлы схемы (рис.3.1).

Так как узлы 1,3,5,6 соединены проводниками, в которых отсутствуют сопротивления, их можно объединить в один узел. Узлы 2,4,7, 8 также соединены между собой проводниками, в которых отсутствуют сопротивления, их тоже можно объединить в один узел. Получим схему (рис.3.2)

Все сопротивления включены параллельно.

Эквивалентное сопротивление

$$R_{_{9KB}} = \frac{R}{5} = \frac{50}{5} = 10 \ O_M.$$

Ответ. $R_{9KG} = 10 \ OM$.

Задача 4 (15 баллов)

Дано: E=200 В; R_1 =10 Ом; R_2 = R_4 =10 Ом; R_3 =5 Ом; R_5 =15 Ом (рис).

Определить показание вольтметра.

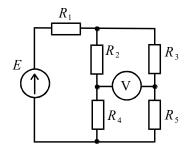
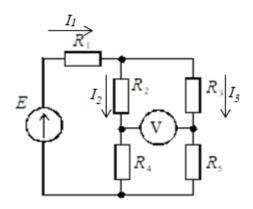



Рисунок к задаче 4.

Решение.

Определим токи.

$$I_1 = \frac{E}{\frac{(R_2 + R_4) \cdot (R_3 + R_5)}{R_2 + R_4 + R_3 + R_5} + R_1} = \frac{200}{20} = 10A.$$

$$I_2 = I_3 = \frac{I_1}{2} = 5A.$$

Показание вольтметра

$$U_V = I_2 R_2 - I_3 R_3 = 5 \cdot 10 - 5 \cdot 5 = 25B.$$

Ответ. Показание вольтметра $U_V=25B$.

Задача 5 (5 баллов)

Дано: E= 10 В, U_{ab} = 30 В, R =10 Ом (рис.). Определить ток I на участке электрической цепи.

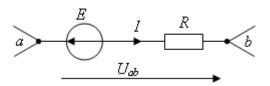


Рисунок к задаче 5

Решение.

$$U_{ab} - I \cdot R = E.$$

Отсюда ток

$$I = \frac{U_{ab} - E}{R} = \frac{30 - 10}{10} = 2 A.$$

Ответ. I = 2 A.

Задача 6 (15 баллов)

Определить токи I_1 , I_2 , I_3 в ветвях электрической цепи постоянного тока при напряжении U=240 В и сопротивление резистора R_1 (рис.). Сопротивления резисторов: R_2 =10 Ом, R_3 =15 Ом, мощность, потребляемая цепью, P=7,2 кВт. Чему будет равна мощность P', потребляемая из сети, если напряжение питающей сети увеличить на 30% при неизменных параметрах резисторов?

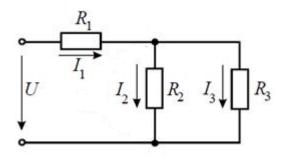


Рисунок к задаче 6.

Решение.

Определим ток

$$I_1 = \frac{P}{U} = \frac{7200}{240} = 30A.$$

Эквивалентное сопротивление

$$R_{_{9KB}} = R_1 + \frac{R_2 \cdot R_3}{R_2 + R_3}.$$

Или

$$R_{_{\mathcal{H}B}} = \frac{U}{I_1} = \frac{240}{30} = 8 \ OM.$$

Тогда

$$R_1 = R_{_{\mathcal{H}\mathcal{B}}} - \frac{R_2 \cdot R_3}{R_2 + R_3} = 8 - \frac{10 \cdot 15}{10 + 15} = 2 \ OM.$$

Определим токи

$$I_2 = I_1 \frac{R_3}{R_2 + R_3} = 30 \cdot \frac{15}{25} = 18 A.$$

$$I_3 = I_1 - I_2 = 30 - 18 = 12 A$$
.

После увеличения напряжения на 30% получим, что приложенное напряжение (обозначим его U') будет равно

$$U' = U + 0.3U = 240 + 72 = 312 B.$$

Ток первый (I_1') после увеличения напряжения на 30%

$$I_1' = \frac{U'}{R_{2KB}} = \frac{312}{8} = 39 A.$$

Тогда мощность станет равной

$$P' = I_1' \cdot U' = 312 \cdot 39 = 12168 \ Bm = 12,168 \ \kappa Bm.$$

Ответ.
$$I_1 = 30A$$
; $I_2 = 18A$; $I_3 = 12A$; $P' = 12168 Bm = 12,168 \kappa Bm$.

Задача 7. (20 баллов)

Проволочное кольцо включено в цепь, в которой протекает ток 9 А.

Контакты делят длину кольца в отношении 1:2. При этом в кольце выделяется мощность P = 108 Вт. Какая мощность (P') выделялась бы (при том же токе во внешней цепи) если бы контакты были расположены по диаметру кольца?

Решение.

Изобразим схему включения кольца (рис.).

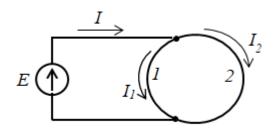


Рис. Схема включения кольца

Пусть сопротивление участка 1 равно R_1 , а сопротивление участка 2 равно R_2 . Полное сопротивление кольца

$$R = R_1 + R_2$$
.

Причем

$$R_1 = \frac{1}{3}R$$
. $R_2 = \frac{2}{3}R$.

Мощность, выделяющаяся в кольце

$$P = R_1 I_1^2 + R_2 I_2^2.$$

Ток во внешней цепи

$$I = I_1 + I_2.$$

Токи

$$I_1 = I \frac{R_2}{R_1 + R_2} = \frac{2}{3}I,$$
 $I_2 = I \frac{R_1}{R_1 + R_2} = \frac{1}{3}I.$

Определим сопротивление всего кольца.

Поскольку

$$P = R_1 I_1^2 + R_2 I_2^2.$$

$$P = R_1(\frac{2}{3}I)^2 + R_2(\frac{1}{3}I)^2.$$

Так как

$$R_1 = \frac{1}{3}R, \qquad R_2 = \frac{2}{3}R,$$

TO

$$P = \frac{1}{3}R\frac{4}{9}I^2 + \frac{2}{3}R\frac{1}{9}I^2 = R\frac{4}{27}I^2 + R\frac{2}{27}I^2 = \frac{2}{9}RI^2.$$

Отсюда

$$R = \frac{9P}{2I^2} = 6 OM.$$

Если бы контакты были расположены по диаметру кольца, мощность, выделившаяся в кольце

$$P' = R_1 I_1^2 + R_2 I_2^2.$$

где

$$R_1 = R_2 = \frac{R}{2}.$$

 $I_1 = I_2 = \frac{I}{2}.$

Тогда

$$P' = \frac{R}{2} \left(\frac{I}{2}\right)^2 + \frac{R}{2} \left(\frac{I}{2}\right)^2 = \frac{R}{4} I^2 = \frac{6}{4} \cdot 9^2 = 121,5 \ Bm.$$

Ответ. $P' = 121,5 \, Bm.$